什么是联邦学习?或可破解机器学习数据获取难题
2019-09-03 11:03:49 来源: 科技日报
随着人工智能的不断发展与落地,用户隐私问题越来越受到重视。近日,人工智能大数据公司因为违反相关法规而被罚巨额罚款,用户隐私问题再次回归大众视野。人工智能企业在分享数据的同时应遵守哪些道德原则?隐私保护法规对于AI的发展与落地而言是机遇还是挑战?更强大的数据保护法规是否会减缓AI的发展速度?在日前召开的第28届国际人工智能联合会议(IJCAI)上,业内专家提出了当今各行业在处理数据、实现AI落地需要共同面对的多个问题。
“在《通用数据保护条例》等隐私保护条款实施的前提下,数据处理与隐私保护并不是一场‘零和博弈’的关系,二者的关系需要被正确对待,以实现双赢的局面。”华盛顿大学教授、D.E.Shaw机器学习团队董事总经理兼负责人佩德罗·多明戈斯认为,企业在处理数据时,不要被数据的力量冲昏了头脑,需要重点考虑用户的知情权,承担起相应的社会责任。
如何解决AI应用中出现的“数据孤岛”和用户隐私难题?国际人工智能联合会议2019理事会主席、微众银行首席人工智能官杨强给出了解决方案:“联邦学习或是解决这两个核心问题的同一个解决思路。”
什么是联邦学习?“在保护数据隐私、满足合法合规要求的前提下,继续进行机器学习,这部分研究被称为联邦学习。”杨强说,开始联邦学习的背景是欧盟通过了《数据隐私保护条例》。该条例要求公司在使用数据前要先向用户声明模型的作用,这份条例的实行让许多大数据公司在数据交流方面非常谨慎,这对于极度依赖数据的机器学习是一个巨大的挑战。
“联邦学习希望在不共享数据的前提下,利用双方的数据实现模型增长。”杨强举例,假设两家公司想要建立一个用户画像模型,其中部分用户是重合的。联邦学习的做法是,首先通过加密交换的手段,建立用户的识别符并进行沟通,在加密状态下用减法找出共有的部分用户。因为关键用户信息并没有得到交换,交换的只是共有的识别符,因此这并不违反《数据隐私保护条例》。然后,双方将这部分数据提取出来,将各自拥有的同样用户的不同特征作为输入,迭代地进行训练模型、交换参数的过程。多项测试证明了给定模型参数,双方不能互相反推出对方拥有的、自己没有的特征,因此用户隐私仍然得到了保护。在不违反《数据隐私保护条例》的情况下,双方的模型性能都得到了提高。
“数据安全和用户隐私目前已成为大数据时代的两大挑战,对于金融、医疗及法律等数据敏感行业更甚,联邦学习可以解决这两大问题。”微众银行AI部高级研究员刘洋介绍。
目前,联邦学习已经应用于多个行业的业务板块。未来,AI与用户隐私的平衡问题会持续伴随AI的发展。杨强表示,新一代的机器学习算法框架,需以保护隐私、安全合规为出发点,用透明的机制来保障人工智能的健康发展,联邦学习的发展提供了新思路。(记者马爱平)
标签:
为您推荐
精彩放送
热门文章
-
看好拉美业务中长期增长前景 安信国际将伟禄目标价调至18.5港元
-
陆金所控股一季度净利润同比增6.5% 八成新增借款流向小微企业
-
深圳共享单车市场或将重塑 暂不发展互联网租赁电动自行车
-
高管撑股价13家上市银行获增持 后续走势值得期待
-
A股退市名单再添两家 年内退市公司增至25家
-
年内可转债募资超千亿元 募资规模略低于去年同期
-
北交所首家转板公司诞生!观典防务在科创板上市
-
南京银行第4次被股东增持 城商行为何受“青睐”?
-
多家中小银行下调存款利率 存款降息潮是否来临?
-
南下资金持续流入港股 年内增持中海油等43只港股逾亿股
-
降息“靴子”落地!深圳银行均已执行最新LPR报价
-
韦尔股份增持北京君正 增持后累计持有不超过5000万股
精彩图片
-
迄今最具破坏力小行星将掠过地球 飞行速度比高速飞行子弹快20倍
-
全球变暖影响人们睡眠时间 每年平均失去44小时睡眠时长
-
“下一代奇迹材料”石墨炔首创成功 填补碳材料科学空白
-
早期动物五亿多年前已形成复杂生态群落 为寒武纪大爆发奠定基础
-
西藏察隅发现中国最高树 高达83.2米胸径207厘米
-
揭示月背月壤粗细规律!月球表面年龄与月壤内部非均匀性呈正相关
-
长期暴露于野火中的居住人群 脑瘤发病率提高10%
-
研究发现:海草底部蔗糖浓度约比记录高80倍
-
4月苍穹精彩纷呈 群星“成团出道”
-
科学家发现新方法 提高鹿角珊瑚种植成功率
-
湖南首创数字贸易综合服务平台 1.2万家企业入驻
-
研究:每周吃5次或更少的肉与较低的总体癌症风险相关
热文
-
哪些基金是红利指数基金?红利指数基金的好处是什么?
-
车险投保人有什么风险?车险投保人是受益人吗?
-
存货周转率多少合适合理范围是什么?存货周转率小于1说明什么?
-
银行定期存款利率是多少?七日年化2.3%一万一月多少钱?
-
美巢专注家装环保辅料领域,致力于打造室内完美墙面
-
中视酒业供应链十大解决方案突破行业痛点多方共赢!
-
沈腾、马丽今晚做客“蘑菇屋“ 容声冰箱为新鲜美食保驾护航
-
资管机构遭仿冒,hopingclub华英会紧急澄清,请投资者提高警惕
-
QCY AilyPods蓝牙耳机预售10分钟破千台:够小够轻够性价比!
-
坚果投影仪O1和峰米R1 Nano,居家观影必备!
-
轻燃卡卡:轻体健康领域品牌林立,轻燃卡卡凭什么破圈出局?
-
数据表明母婴的风口要来了 选择靠谱的品牌是关键
-
郑明明抗皱凝时胶囊精华有效吗?要怎么用呢?
-
青海省商业性住房贷款利率下调 首套房贷利率调整为4.8%
-
太原多家楼盘已按房贷利率新标办贷 太原市民购房能省多少钱?
-
前5月兰州新区商品房销售面积环比增长约12% 价格同比增2.75%
-
5.26苏州楼市成交稳定 住宅房源共成交34367.37㎡
-
高管撑股价13家上市银行获增持 后续走势值得期待
-
A股退市名单再添两家 年内退市公司增至25家
-
银保监会拟全方位透视险企综合风险水平 全新划分风险等级
-
年内可转债募资超千亿元 募资规模略低于去年同期
-
前四月发放就业补贴超亿元 惠及高校毕业生3.8万人次
-
618选机困难症?一文读懂iQOO Neo6 SE、红米 Note 11T Pro怎么选
-
2022冰箱高峰论坛成功举办,海信真空冰箱获权威肯定
-
股票哪些技术指标最有用?如何设置股票技术指标参数?
-
深港通的标的股有哪些? 什么股票属于深港通?
-
95开头的电话能接不?9521是什么电话?
-
上折和下折什么意思? 现货折盘价是什么意思?
-
余额宝双休日也有收益吗? 零钱通周末有收益吗?
-
深发展信用卡怎么样?信用卡申请进度查询方法是什么?
-
余额宝转出10万要多久?余额宝实时到账吗?
-
乐蜂网创建时间是什么时候?乐蜂网还存在吗?
-
信用卡积分兑换订单怎么查询?5000积分兑换多少话费?
-
国美电器是做什么的董事长是谁?国美有哪些股票代码?
-
腾讯持有快手多少股票?快手与腾讯是什么关系?
-
余额宝一万块钱一天收益多少?余额宝可以当日提现吗?
-
中欧基金刘建平:优化机制和文化 提升专业能力 切实保护投资者利益
-
稻香村集团(山东公司)一行到访山东朱氏药业集团参观交流
-
蓝湾壳寡糖和壳寡糖益生菌 为您保肝护菌
-
品效双赢,“抖音520宠爱季”引领行业加倍“宠爱”
-
朱氏药业集团朱坤福:把握爆品时代机遇、迈进品牌时代新征程
-
招行信用卡借势金融科技,为客户创造更多价值
-
高新科技培育钻石,或掀时尚界新热潮
-
连续四年!用友精智成为国家级跨行业跨领域工业互联网平台
-
北交所首家转板公司诞生!观典防务在科创板上市
-
hoping club华英会成功的十个法则
-
618购游戏神机iQOO Neo6超优惠,至高24期免息+全程价保+保值换新
-
2022年新形象!AMIRO品牌全新视觉升级!
-
贵州酱酒集团“启航”,助力贵州白酒产业产业升级、产区发展
-
赛克斯发布2022年英国度假屋出租市场展望报告