未来通用人工智能还需依托脑科学发展
2019-12-03 09:01:27 来源: 科技日报
纽约大学心理学与认知科学教授马库斯最近和人工智能企业“深层思维”(DeepMind)杠上了。继前不久在推特(Twitter)上质疑美国通用人工智能研究组织OpenAI的解魔方机械手之后,近日他又对“深层思维”新推出的《星际争霸2》智能体“阿尔法星”(AlphaStar)进化版提出六大质疑。此次,他的质疑点并不是游戏表现本身,而是指向了更高的层面:未来通用智能研究的意义。
近年最酷成果都来自深度强化学习
此次OpenAI推出的解魔方机器手,并不是像以往一样使用专业算法来解决某一个特定任务(如果换一个任务,还需要重新编程),而是通过某种学习方法,对机器人进行训练,让机械手具备类人手的解决问题的能力。但马库斯却认为这个成果描述有误导,更恰当的描述应该是“用强化学习操纵魔方”或者是“用灵巧的机器人手操纵物体的进展”。
“马库斯过于强调‘用强化学习操纵魔方’有点挑剔字眼,其实OpenAI魔方机器手和‘深层思维’发布的《星际争霸2》智能体‘阿尔法星’进化版都使用了深度强化学习技术。深度强化学习是目前公认的在现有技术中最有可能实现通用人工智能的技术。”天津大学智能与计算学部软件学院副教授郝建业解释说,目前机器学习有三大分支,监督学习、非监督学习和强化学习,深度学习属于监督学习里目前最主流的一类技术。深度强化学习是深度学习与强化学习的融合,是将深度神经网络整合到强化学习框架当中。
“近几年,深度强化学习发展迅猛,它在处理复杂、多方面和决策问题方面显示出巨大的潜力。目前深度强化学习技术主要应用在一些游戏、比赛中。”郝建业介绍,2016年,谷歌的“阿尔法围棋”(AlphaGo)击败了世界顶级围棋选手李世石、柯洁,轰动一时,成为人工智能领域的一个里程碑。“阿尔法围棋”的核心就在于使用了深度强化学习算法,使得计算机能够通过自对弈的方式不断提升棋力。此后又有脸书(Facebook)在DOTA2游戏中打败了顶级职业选手;CMU团队研发的德州扑克AI冷扑大师轻松击败顶级玩家。
此外,“深层思维”还运用深度强化学习优化了数据中心的耗能;谷歌则利用深度强化学习完成深度神经网络的自动架构搜索,提出了AutoML服务,借此将机器学习作为一种服务推广到千家万户。在我国,对于深度强化学习技术的应用也不少,阿里、腾讯、百度等国内团队将深度强化学习应用到搜索、推荐、营销、派单和路径规划等实际问题的决策中。
最有可能实现通用人工智能的技术
人工智能发展到现在的高度,技术上较大的功臣应该属于深度学习算法。深度学习利用多层神经网络,从海量的数据中学习,从而实现对未来的预测,并使人工智能系统越来越智能。目前我们应用的安防监控、自动驾驶、语音识别、百度地图等都是深度学习技术在图像视觉、语音识别、自然语言理解等领域的应用。
而强化学习也是目前机器学习领域的热门技术,与基于已知标签训练模型的监督学习不同,强化学习能够在没有计算机的明确指示下,像人一样实现自主学习。当达到一定的学习量之后,强化学习系统就能够预测出正确的结果。“强化学习的基本思想是,学习在不同环境和不同状态下,哪种行为能够使得预期利益最大化。”郝建业介绍,新版“阿尔法星”智能体就采用了强化学习的自对战技术,其学习过程不需要数据标注,而是由奖励函数进行主导。智能体获得奖励得分或赢得一场比赛,它会得到积极的反馈,智能体就会根据对战的成绩好坏,来调整行为动作。这犹如婴儿学走路,会根据产生的结果好坏来调整行为动作。
目前对通用人工智能的定义主要有两个特点,一是端对端的学习,二是任务自适应, 无需人类参与调控而胜任不同的任务。深度强化学习可以将深度学习的感知能力和强化学习的决策能力相结合,直接根据输入的信息进行控制,是一种更接近人类思维方式的人工智能技术。在与世界的正常互动过程中,强化学习会通过试错法利用奖励来学习,这跟自然学习过程非常相似。比如单手解魔方机器手,它可能需要利用深度学习的识图技术等看到魔方,而后还需强化学习的模型让机器手在不断的试错过程中自主学习。在强化学习中,可以使用较少的训练信息,这样做的优势是信息更充足,而且不受监督者技能限制。深度强化学习朝构建对世界拥有更高级理解的自主系统又迈出了一步,这也是为什么说深度强化学习是目前公认的在现有技术中最有可能实现通用人工智能的技术。
未来通用人工智能还需依托脑科学发展
“虽然说深度强化学习技术最有可能实现通用人工智能,但是并不能说就一定能够实现,我们离真正的通用人工智能还是有很大差距的。”郝建业表示,深度学习和强化学习结合的时候,对现实情况的枚举就变成首先需要对现实情况进行模式识别,然后进行有限模式的枚举,从而减少计算的压力,但是所需的数据将比其他机器学习算法要大得多。如果将场景扩展到多智能体的深度强化学习,那么需要的数据和算力是呈指数级上升的,目前还没有平台能够提供强化学习所需要的海量数据,无法穷举现实中可能遇到的种种复杂情况。这种数据需求在很多现实领域中都是无法实现的。
举例说明,比如强化学习需要大量的试错,如果把单手解魔方机器手应用到做饭的现实场景,那么它可能会把食材弄一地,也可能把一整袋盐倒到锅中,还有可能引起火灾。因此通过试错学习的模式,在现实场景中是无法实现的。
此外,深度学习和强化学习都是机器学习领域中最难调试成功的,它的成功案例其实不算很多,但是一旦推出,都会引起轰动。并且,这是一个连随机种子都会大大影响学习效果的模型框架。同样的模型,训练10次可能7次是失败的,3次是成功的。还有一点,深度强化学习极其容易过拟合到智能体当前交互的环境中,所以环境稍有改变,之前看起来表现出色的智能体,很可能就会犯低级错误。
“人类认识事物的时候,一般都是通过数据进行因果推理和判断,才得出相应的解决方案。而目前的人工智能系统却并不能实现这种因果推导。”郝建业表示,可能未来通用人工智能的发展,还需要依托于脑科学的发展,目前我们对人脑的认知还处于非常初级的阶段。大脑对事物的认知过程、解决问题的过程以及思考的能力等机制还都不清楚,因此,目前人工智能的发展,离这种真正能模拟人类智能思考的通用人工智能还有很长的路要走。
延伸阅读
延伸阅读
人工智能晋级《星际争霸2》玩家最高等级
一项在《星际争霸2》欧洲服务器上开展的“盲测”显示,谷歌旗下“深层思维”公司开发的人工智能程序“阿尔法星”在游戏中超越99.8%的人类玩家,在游戏的人族、神族和虫族排名中均达到最高的“宗师”级别。“深层思维”研发团队在日前出版的英国《自然》杂志上报告了这项成果。
据介绍,在《星际争霸2》官网欧洲服务器上,“阿尔法星”使用与人类玩家相同的地图和条件匿名参与游戏,并能在无人干预情况下持续自我改进。为了让测试更公平,团队还根据人类玩家的水平限制了机器的某些能力,比如将“阿尔法星”的动作频率降低到与熟练人类玩家接近,并把它的视野限制在摄像头范围内。
“深层思维”研发团队认为,训练“阿尔法星”的先进方法以及算法架构未来有望用于解决复杂的实际问题,包括天气预测、气候模型计算以及语言理解等。但也有学者对现阶段人工智能挑战战略游戏的能力持保守态度。加拿大纽芬兰纪念大学人工智能学者戴夫·丘吉尔认为,“阿尔法星”仍有许多弱点,比如无法抵御以前从未见过的战略等。(陈曦)
标签: 人工智能
为您推荐
精彩放送
热门文章
-
看好拉美业务中长期增长前景 安信国际将伟禄目标价调至18.5港元
-
陆金所控股一季度净利润同比增6.5% 八成新增借款流向小微企业
-
深圳共享单车市场或将重塑 暂不发展互联网租赁电动自行车
-
高管撑股价13家上市银行获增持 后续走势值得期待
-
A股退市名单再添两家 年内退市公司增至25家
-
年内可转债募资超千亿元 募资规模略低于去年同期
-
北交所首家转板公司诞生!观典防务在科创板上市
-
南京银行第4次被股东增持 城商行为何受“青睐”?
-
多家中小银行下调存款利率 存款降息潮是否来临?
-
南下资金持续流入港股 年内增持中海油等43只港股逾亿股
-
降息“靴子”落地!深圳银行均已执行最新LPR报价
-
韦尔股份增持北京君正 增持后累计持有不超过5000万股
精彩图片
-
迄今最具破坏力小行星将掠过地球 飞行速度比高速飞行子弹快20倍
-
全球变暖影响人们睡眠时间 每年平均失去44小时睡眠时长
-
“下一代奇迹材料”石墨炔首创成功 填补碳材料科学空白
-
早期动物五亿多年前已形成复杂生态群落 为寒武纪大爆发奠定基础
-
西藏察隅发现中国最高树 高达83.2米胸径207厘米
-
揭示月背月壤粗细规律!月球表面年龄与月壤内部非均匀性呈正相关
-
长期暴露于野火中的居住人群 脑瘤发病率提高10%
-
研究发现:海草底部蔗糖浓度约比记录高80倍
-
4月苍穹精彩纷呈 群星“成团出道”
-
科学家发现新方法 提高鹿角珊瑚种植成功率
-
湖南首创数字贸易综合服务平台 1.2万家企业入驻
-
研究:每周吃5次或更少的肉与较低的总体癌症风险相关
热文
-
哪些基金是红利指数基金?红利指数基金的好处是什么?
-
车险投保人有什么风险?车险投保人是受益人吗?
-
存货周转率多少合适合理范围是什么?存货周转率小于1说明什么?
-
银行定期存款利率是多少?七日年化2.3%一万一月多少钱?
-
美巢专注家装环保辅料领域,致力于打造室内完美墙面
-
中视酒业供应链十大解决方案突破行业痛点多方共赢!
-
沈腾、马丽今晚做客“蘑菇屋“ 容声冰箱为新鲜美食保驾护航
-
资管机构遭仿冒,hopingclub华英会紧急澄清,请投资者提高警惕
-
QCY AilyPods蓝牙耳机预售10分钟破千台:够小够轻够性价比!
-
坚果投影仪O1和峰米R1 Nano,居家观影必备!
-
轻燃卡卡:轻体健康领域品牌林立,轻燃卡卡凭什么破圈出局?
-
数据表明母婴的风口要来了 选择靠谱的品牌是关键
-
郑明明抗皱凝时胶囊精华有效吗?要怎么用呢?
-
青海省商业性住房贷款利率下调 首套房贷利率调整为4.8%
-
太原多家楼盘已按房贷利率新标办贷 太原市民购房能省多少钱?
-
前5月兰州新区商品房销售面积环比增长约12% 价格同比增2.75%
-
5.26苏州楼市成交稳定 住宅房源共成交34367.37㎡
-
高管撑股价13家上市银行获增持 后续走势值得期待
-
A股退市名单再添两家 年内退市公司增至25家
-
银保监会拟全方位透视险企综合风险水平 全新划分风险等级
-
年内可转债募资超千亿元 募资规模略低于去年同期
-
前四月发放就业补贴超亿元 惠及高校毕业生3.8万人次
-
618选机困难症?一文读懂iQOO Neo6 SE、红米 Note 11T Pro怎么选
-
2022冰箱高峰论坛成功举办,海信真空冰箱获权威肯定
-
股票哪些技术指标最有用?如何设置股票技术指标参数?
-
深港通的标的股有哪些? 什么股票属于深港通?
-
95开头的电话能接不?9521是什么电话?
-
上折和下折什么意思? 现货折盘价是什么意思?
-
余额宝双休日也有收益吗? 零钱通周末有收益吗?
-
深发展信用卡怎么样?信用卡申请进度查询方法是什么?
-
余额宝转出10万要多久?余额宝实时到账吗?
-
乐蜂网创建时间是什么时候?乐蜂网还存在吗?
-
信用卡积分兑换订单怎么查询?5000积分兑换多少话费?
-
国美电器是做什么的董事长是谁?国美有哪些股票代码?
-
腾讯持有快手多少股票?快手与腾讯是什么关系?
-
余额宝一万块钱一天收益多少?余额宝可以当日提现吗?
-
中欧基金刘建平:优化机制和文化 提升专业能力 切实保护投资者利益
-
稻香村集团(山东公司)一行到访山东朱氏药业集团参观交流
-
蓝湾壳寡糖和壳寡糖益生菌 为您保肝护菌
-
品效双赢,“抖音520宠爱季”引领行业加倍“宠爱”
-
朱氏药业集团朱坤福:把握爆品时代机遇、迈进品牌时代新征程
-
招行信用卡借势金融科技,为客户创造更多价值
-
高新科技培育钻石,或掀时尚界新热潮
-
连续四年!用友精智成为国家级跨行业跨领域工业互联网平台
-
北交所首家转板公司诞生!观典防务在科创板上市
-
hoping club华英会成功的十个法则
-
618购游戏神机iQOO Neo6超优惠,至高24期免息+全程价保+保值换新
-
2022年新形象!AMIRO品牌全新视觉升级!
-
贵州酱酒集团“启航”,助力贵州白酒产业产业升级、产区发展
-
赛克斯发布2022年英国度假屋出租市场展望报告